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a b s t r a c t

In this study, a novel lifting motion simulation model was developed based on a multi-objective opti-
mization (MOO) approach. Two performance criteria, minimum physical effort and maximum load
motion smoothness, were selected to define the multi-objective function in the optimization procedure
using a weighted-sum MOO approach. Symmetric lifting motions performed by younger and older adults
under varied task conditions were simulated. The results showed that the proposed MOO approach led to
up to 18.9% reductions in the prediction errors compared to the single-objective optimization approach.
This finding suggests that both minimum physical effort and maximum load motion smoothness play an
important role in lifting motion planning. Age-related differences in the mechanisms for planning lifting
motions were also investigated. In particular, younger workers tend to rely more on the criterion of
minimizing physical effort during lifting motion planning, while maximizing load motion smoothness
seems to be the dominant objective for older workers.
Relevance to industry: Lifting tasks are closely associated with occupational low back pain (LBP). In this
study, a novel lifting motion simulation model was developed to facilitate the analysis of lifting
biomechanics and LBP prevention. Age-related differences in lifting motion planning were discussed for
better understanding LBP injury mechanisms during lifting.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Low back pain (LBP) is one of the most prevalent and costly
occupational injuries. In the US, the lifetime prevalence of LBP is
over 60% (Krismer and van Tulder, 2007), and the corresponding
annual costs exceed $100 billion (Katz, 2006). Manual lifting is a
major risk factor for occupational LBP (Garg and Moore, 1992; Hoy
et al., 2010), mainly because of the high loads imposed on the
lumbar spine during lifting. Therefore, to well address the occu-
pational LBP problem, there is a need for biomechanical analysis on
the lifting task, including examiningwhole-bodymotions/postures,
and estimating the loads imposed onto the body musculoskeletal
system (Chaffin et al., 2006).

Many biomechanical models have been developed to estimate
the loads exerted onto the human body (e.g., the low back joint
s and Ergonomics, College of
versity, 3688 Nanhai Avenue,
moments and forces) during lifting tasks (Chaffin et al., 2006).
Whole-body motions always become a necessary input to these
models. The traditional way to collect actual human motions is
using photographic, optical or inertial measurement systems in the
field or lab-based experiment, which is time-consuming and usu-
ally results in high financial cost. The use of dynamic motion
simulation models has recently evolved into a useful technology
which can help predict human motions and reduce the time and
costs spent on actual motion data collections (Abdel-Malek et al.,
2006; Chaffin, 2005).

A majority of motion simulation models are based on the opti-
mization principle. Various types of human motions, such as
reaching (Jung et al., 1995; Jung and Shin, 2010; Mi et al., 2009),
lifting (Lin et al., 1999) and walking (Xiang et al., 2009), have been
predicted by these models. In these models, the central nervous
system (CNS) is assumed to plan human motions using certain
performance criteria. These criteria are then used to define objec-
tive functions in the optimization procedure to predict human
motions. Many performance criteria have been proposed for lifting
motion simulation, such as minimum efforts (Gündogdu et al.,
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2005; Hsiang and Ayoub, 1994; Lin et al., 1999), maximum dynamic
stability (Abedi et al., 2012; Dysart and Woldstad, 1996), minimum
low back spinal forces (Xiang et al., 2012a), and maximum load
motion smoothness (Hsiang and McGorry, 1997).

One major limitation of the optimization-based models is the
difficulty in identifying the ‘true’ performance criteria. This limi-
tation can result in inaccurate and unrealistic predictedmotions. To
address this limitation, hybrid approaches which incorporate actual
humanmotions into the optimization have been proposed in recent
research (Pasciuto et al., 2014; Song et al., 2015; Xiang et al., 2012b).
For instance, Pasciuto et al. (2014) and Xiang et al. (2012b) simu-
lated human motions by minimizing the weighted-sum value of a
knowledge-based and a data-based objective function. The
knowledge-based objective function was defined based on the
minimum energy criterion, and the data-based objective function
was defined as the minimum difference between the actual and
predicted motions. In our prior work (Song et al., 2015), a hybrid
optimization-based model was proposed for lifting motion simu-
lation, in which minimum physical effort was used as the perfor-
mance criterion, and the simulated joint angular velocities were
bounded by the time-functional constraints determined by actual
motion data.

Chang et al. (2001) suggested that more than one performance
criterion might be needed to better predict and explain the lifting
behaviour. However, few studies in the existing literature applied
more than one performance criterion in their motion simulation. To
the best of our knowledge, the only study that used multiple per-
formance criteria for lifting motion simulation was conducted by
Xiang et al. (2010) who used a multiple objective optimization
approach (MOO) to examine the relative effects of minimum dy-
namic effort and maximum stability for lifting motion planning.
Xiang et al. (2010) found that the MOO approach did not lead to
significant improvements on the simulation accuracy compared to
the single-objective optimization approach which used the mini-
mum dynamic effort as a single performance criterion. Thus, they
suggested that the maximum stability may not be an effective
performance criterion for lifting motion simulation, and there is a
need to further investigate alternative performance criteria which
can be used in the MOO approach for better lifting motion
simulation.

Another limitation of the existing models for lifting motion
simulation is that they were only used to predict motions for young
and/or middle-aged (20e40 years) adults (Chang et al., 2001;
Dysart and Woldstad, 1996; Hsiang and McGorry, 1997; Lin et al.,
1999; Xiang et al., 2010). Lifting motions of older adults (>55
years) have not been extensively studied using the motion simu-
lation method. In fact, previous experimental studies showed sig-
nificant distinctions in lifting motion patterns between young and
older adults (Song and Qu, 2014a, b), which implies that there exist
age-related differences in the mechanisms for planning lifting
motions.

To address the limitations of the existing lifting motion simu-
lation models, the objectives of the present study are twofold. First,
we aimed to propose a novel lifting motion simulation model using
the MOO approach. The second objective was to investigate age-
related differences in the mechanisms for lifting motion planning
using the proposed lifting simulationmodel. Specifically, the hybrid
model proposed in the prior work (Song et al., 2015) was further
developed, in which two performance criteria, including minimum
physical effort and maximum smoothness of the external load
motion, were investigated. The objective function in the MOO was
defined as the weighted sum of the performance measures derived
from these two criteria. Lifting motions of younger and older adults
were simulated separately to examine age effects on lifting motion
planning mechanisms.
2. Actual lifting data collection

Actual lifting motion data from the prior work (Song and Qu,
2014a) were used for the model development and evaluation.
Eleven younger participants (six males and five females) aged be-
tween 20 and 30 years old and twelve older participants (seven
males and five females) aged over 55 years old were recruited from
the university and local community. All of themwere free from any
musculoskeletal disorders in the last six months. The demographic
information about their age, height, body weight and maximum
lifting capacity (MLC) was listed in Table 1. All participants signed
the consent form approved by the Nanyang Technological Univer-
sity Institutional Review Board before the data collection.

Before lifting motion data collection, participants conducted an
isokinetic lifting test to measure their MLC using a commercial
dynamometer (Biodex System 4 Pro, Shirley, NY, USA). After the
MLC measurement, 31 reflective markers were placed on the
selected body landmarks of each participant, and the whole-body
lifting motions were measured using an eight-camera optoelec-
tronic motion capture system (Motion Analysis Eagle System, Santa
Rosa, CA, USA). The MLC measurement protocol and the marker
placement can be found in Song and Qu (2014a).

During the lifting task, participants lifted a load from the floor to
a shelf (Fig. 1). The lifted load was a square box
(length � width � depth: 0.34 m � 0.24 m � 0.26 m) with two
handles on its sides. Both the box and the shelf were placed directly
in front of participants before lifting. The distance from the shelf
edge to the participants' standing point (i.e. the middle point of the
two ankle joints) was 58 cm. The initial horizontal distance from
the box centre to participants' standing point was 40 cm. Three
shelf heights (wrist, elbow and shoulder during the erect stance)
and three load weights (5%, 15% and 25% of participants' MLC) were
involved in the experiments. Therefore, there were nine lifting task
conditions (3 shelf heights � 3 load weights) for each participant.
These task conditions were randomly ordered during experiment,
and three repetitions were performed for each task condition.
Before each lifting trial, participants were informed of the lifted
load weight and the destination height. Participants were not
allowed to move their feet during lifting, and they were instructed
to lift the box by holding its handles and using self-selected lifting
strategies and speeds. Prior to data collection, participants were
provided with a practice session to get familiar with the lifting
protocol. To minimize fatigue effects, a 30-second break (standing
without load) was given after every lifting trial.

The motion data from one older male participant and 41 lifting
trials from other 11 participants were excluded because of the
significant asymmetric movement patterns. The remaining data
were divided into two sets for the purposes of model development
and evaluation, respectively. Specifically, the liftingmotions (totally
315 trials) from 12 participants were selected to formulate a data-
base for model development. These 12 participants consist of 6
younger (age: 23.3(2.1), height: 168.2(8.5) cm, weight: 52.3(4.7) kg)
and 6 older (age: 64.5(5.24), height: 163.7(7.7) cm, weight:
61.3(11.5) kg), and each age group contains 3 males and 3 females.
The lifting motions (totally 238 trials) performed by the other 10
participants (5 younger and 5 older) were used for model evalua-
tion. Both the younger (age: 24(1.9), height: 165.6(4.5) cm, weight:
57.4(8.2) kg) and older (age: 68.6(5.6), height: 159.6(6.9) cm,
weight: 58(7.3) kg) age groups contain three males and two
females.

3. The lifting motion simulation model using the MOO
approach

Symmetric lifting (i.e., in the sagittal plane) is very common in



Table 1
Demographic information of participants.

Young Old

Male Female Male Female

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age (years) 25.0 (1.3) 22.0 (1.4) 68.1 (5.6) 63.2 (4.8)
Height (cm) 171.5 (5.3) 161.6 (4.3) 168.4 (8.7) 156.4 (3.4)
Body weight (kg) 57.3 (8.6) 51.4 (3.3) 65.1 (12.3) 55.6 (2.3)
Maximum lifting capacity (kg) 32.9 (7.3) 19.0 (5.0) 26.1 (13.9) 16.7 (5.7)

Fig. 1. A participant performing a lifting task in the experiment.

Fig. 2. The structure of the simulation model and the simulation process.
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occupational settings, therefore this model focuses on simulating
two-dimensional (2-D) lifting motions. The inputs of the model
include the lifting task conditions (i.e., the lifted load weight, the
initial and final load positions), the lifter's attributes (i.e., age,
gender, body weight and segment lengths), the total lifting time
duration and the starting and ending body postures. Specifically,
similar with previous studies (Chang et al., 2001; Hsiang and
Ayoub, 1994; Lin et al., 1999; Qu and Nussbaum, 2009), the lifting
time duration and the starting and ending body postures are
specified by the corresponding actual motion data. Besides, the
values of the weighting parameters for the MOO approach are also
specified before simulation. The output of the model is the simu-
lated motions which are represented as the whole-body joint
angular trajectories (angleetime functions). The whole model is
composed of four components: a lifting motion database, a physical
human body model, an optimization model, and a joint angular
trajectory model. The model structure and the simulation process
are illustrated in Fig. 2. The lifting motion database is constructed
by the motion data for model development (Please see Section 2).
The following presents the details of the other components and the
simulation process.
3.1. Physical human body model

The human body during symmetric lifting is represented by a 2-
D five-segment linkage model. Fig. 3(a) shows the segment
configuration and the coordinate system of the linkage model. The
segments of themodel include the forearm, upper arm, trunk, thigh
and shank (L1 ~ L5). The mass of the head and neck are integrated
into the trunk segment, and these three body parts are combined as
one rigid link. The inertia parameters of the segments (i.e., the
mass, the moment of inertia and the centre of mass (COM) position
of each segment) are determined according to de Leva (1996). The
five joints from the elbow to ankle (J1 ~ J5) are modelled as revolute
joints with one degree of freedom. The joint centre positions are
determined by the sagittal projections of the corresponding
reflective markers (Song and Qu, 2014a). Therefore, given the
segment lengths, the body configuration at any time moment
during lifting can be specified with the five joint angles (qi, i ¼ 1,…,
5) which are defined based on the orientation of the corresponding
segments with respect to the horizontal axis X.

Given the lifted load weight, the whole-body kinematics, and
the segments' lengths and inertia parameters, the joint reaction
forces and moments can be calculated by analysing each body
segment in a topedown sequence (i.e., forearm / upper



Fig. 3. The Human Body Linkage Model: (a) Human linkage model and coordinate
system; (b) The free-body diagram of a segment with its joint reaction forces and
moments; (c) The definition of the included joint angles.
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arm / trunk / thigh / shank) using inverse dynamics. Fig. 3(b)
shows a free-body diagram of one segment Li, whose joint reaction
forces andmoments can be calculated by the following equations of
motion (Eq. (1)):

Fi � Fi�1 þmigi ¼ miai
Mi �Mi�1 � rGi;Ji�1 � Fi�1 þ rGi;Ji � Fi ¼ Ii q

��
i

(1)

where Fi and Mi are the force vector and moment acting at the i-th
joint (Ji) onto the i-th segment (Li), respectively; rGi,Ji�1 and rGi,Ji are
the vectors pointing from the COM (Gi) of the segment Li to the joint
Ji�1 and Ji, respectively; g is the gravity vector;mi and Ii are themass
and moment of inertia of the segment Li, respectively; ai is the
linear acceleration of the COM Gi; q

��
i is the angular acceleration of

the segment Li; and � denotes a vector product.

3.2. Optimization model

In this study, human motions are simulated by solving a non-
linear optimization problem. Lifting motions are assumed to be
governed by two performance criteria (i.e., minimum physical
effort and maximum smoothness of the lifted load motion). The
minimum physical effort is associated with reduced energy
expenditure during lifting (Fogleman and Smith, 1995), and has
been extensively used for lifting motion simulation (Chang et al.,
2001; Hsiang and Ayoub, 1994; Lin et al., 1999; Xiang et al., 2010).
The maximum load motion smoothness has also been selected as a
performance criterion for liftingmotion simulation, as this criterion
is associated with reduced low back load during symmetric lifting
(Hsiang and McGorry, 1997) which is a critical issue in lifting mo-
tion control. Besides, Flash and Hogan (1985) indicated that
achieving the smoothest motion may be one underlying objective
of the CNS when planning human motions, because motions ten-
ded to be performed more smoothly with learning and practicing.
Actually, they successfully used the maximum hand motion
smoothness as the performance criterion in hand reaching motion
simulation (Flash and Hogan,1985). Based on these, bothminimum
physical effort and maximum smoothness of the lifted load motion
may play important roles in lifting motion planning. Therefore,
better predictions on liftingmotionsmight be expectedwhen using
the combination of the two performance criteria (i.e., minimum
physical effort and maximum load motion smoothness) in the
optimization procedure.

The two performance criteria are integrated using theweighted-
sum MOO approach (Marler and Arora, 2004) for motion simula-
tion. Specifically, two single objective functions (i.e., ObjEffort and
ObjSmooth) are defined corresponding to the two performance
criteria (i.e., minimum physical effort and maximum load
smoothness), respectively. A composite objective function (ObjCom)
that is a function of the two single objective functions and their
corresponding weightings (wE and wS) is minimized in the MOO
procedure to generate the simulated motions. The optimization
problem in this study can be presented as follows (Eq. (2)):

Find qiðtÞ i ¼ 1; :::;5
Minimize ObjCom ¼ F

�
ObjEffort ;ObjSmooth;wE;wS

�
Subject to ConEqj ðqiÞ ¼ 0 j ¼ 1; :::;m

ConIneqk ðqiÞ � 0 k ¼ 1; :::;n

(2)

where qi(t) are the joint angular trajectories; wE and wS are the
weightings for ObjEffort and ObjSmooth in the MOO, respectively; F(∙)
indicates that ObjCom is a function of the single objective functions
(ObjEffort and ObjSmooth) and their weightings (wE andwS); Con

Eq
j and

ConIneqk are equality and inequality constraints, respectively. The



Table 2
Motion ranges of the included joint angles (�).

Included joint angles Lower bound (aLi ) Upper bound (aUi )

Elbow: a1 ¼ 180 � q1 þ q2 38 180
Shoulder: a2 ¼ 180 � q3 þ q2 �61 188
Hip: a3 ¼ 180 � q4 þ q3 67 180
Knee: a4 ¼ 180 � q4 þ q5 67 180
Ankle: a5 ¼ q5 55 128

J. Song et al. / International Journal of Industrial Ergonomics 53 (2016) 37e47 41
definitions of the single objective functions, the formulation of the
composite objective function and the various constraints are pre-
sented in details as follows.

3.2.1. Objective functions
3.2.1.1. Single objective functions. Two single objective functions
are defined corresponding to the two performance criteria: mini-
mum physical effort and maximum smoothness of the loadmotion.
The objective function of minimum physical effort (ObjEffort) is
defined as the time integral of the square sum of the ratios between
the joint moments and the corresponding joint strengths (Eq. (3)):

ObjEffort ¼
ZT
0

X5
i¼1

�
MiðtÞ
Si

�2
dt (3)

whereMi is themoment of joint i, Si is the strength of joint i, and T is
the total lifting time duration. The joint moment Mi can be calcu-
lated from the joint angular trajectories qi(t) using Eq. (1), and the
joint strengths Si were defined as the 50th percentile of the cor-
responding static joint moment strengths of the males or females
according to Chaffin et al. (2006).

The objective function ObjSmooth is defined as minimizing the
jerk (i.e., maximizing the smoothness) of the end-effector (i.e. the
hands and lifted load) motion. The mathematical equation of this
objective function is (Eq. (4)):

ObjSmooth ¼
ZT
0

 �
d3xL
dt3

�2

þ
�
d3yL
dt3

�2!
dt (4)

in which xL and yL are the horizontal and vertical coordinates of the
load geometric centre, respectively.

3.2.1.2. Formulation of the composite objective function. The com-
posite objective function ObjCom is defined as aweighted sum of the
single objective functions ObjEffort and ObjSmooth after normalization
(Eq. (5)):

ObjCom ¼ wEN
�
ObjEffort

�
þwSNðObjSmoothÞ

wE þwS ¼ 1
(5)

where wE and wS are the weightings for ObjEffort and ObjSmooth,
respectively, with their ranges from 0 to 1. N(∙) is a normalization
operator defined by Marler and Arora (2005). Specifically, the
normalization of a single objective function N(ObjSp) (p ¼ 1 or 2) is
defined as follows (Eq. (6)):

N
�
ObjSp

�
¼

ObjSpðqiðtÞÞ � ObjMin
Sp

ObjMax
Sp � ObjMin

Sp

(6)

where ObjMin
Sp is the minimum value of ObjSp, and ObjMax

Sp is defined
as ObjSpðqiðtÞ*Þ where qiðtÞ* is the point that minimizes the other
single objective function ObjSq (q ¼ 1 or 2; qsp).

3.2.2. Constraints
The constraints of the optimization consist of joint angle limits,

data-based joint angular velocity constraints, joint moment limits,
postural balance constraints, and body-load and shelf-load collision
avoidance. Descriptions of these constraints are presented below
and can also be found in our earlier work (Song et al., 2015).

3.2.2.1. Joint angle limits. The constraints of joint angle limits are
defined as follows (Eq. (7)):
aLi � aiðtÞ � aUi i ¼ 1; :::; 5; t2½0; T� (7)

in which ai (i ¼ 1, …, 5) are the included joint angles, aLi and aUi are
the lower and upper boundaries of the i-th included joint angle, and
T is the total time duration of the lifting task.

The included joint angles are the relative angles between their
adjacent segments (Fig. 3(c)), and can be calculated from the joint
angles qi using the equations in Table 2. Their boundary values (i.e.,
aLi and aUi presented in Table 2) were obtained from Chaffin et al.
(2006).

3.2.2.2. Data-based joint angular velocity constraints. The data-
based joint angular velocity constraints which were defined in
Song et al. (2015) are also used in this study. Specifically, the time
functions of the included joint angular velocities (ai

� ðtÞ; i ¼ 1; :::;5)
of the simulated motions are bounded by a set of functional con-
straints which are defined based on the actual motions in the lifting
motion database.

To define these data-based constraints, a regression model is
first developed based on the data in the lifting motion database
using a functional regression technique (Faraway, 1997). The
response variables of the regressionmodel are the time functions of
the included joint angular velocities ai

� ðtÞ, where t is the normal-
ized time with t ¼ 0 and t ¼ 1 corresponding to the start and the
end of the motion, respectively. The predictors in the regression are
defined by load weight, destination height, and age. A quadratic
regression model is developed as follows (Eq. (8))

aMi

�
ðtÞ ¼b0i ðtÞ þ bWi ðtÞW þ bHi ðtÞH þ bAi ðtÞAþ bW

2

i ðtÞW2

þ bH
2

i ðtÞH2 þ εiðtÞ i ¼ 1; :::; 5; t2½0;1�
(8)

where aMi

�
ðtÞ is the response variable which denotes the predicted

mean value of the i-th included joint angular velocity at the
normalized time t; W, H and A are the predictors: W is the load
weight defined as the percentage of the subject's maximum lifting
capacity, H is the destination height calculated as the percentage of
the body height, A is a binary accounting for the subject's age:

0 ¼ younger adults and 1 ¼ older adults; b0i , b
W
i , bHi , b

A
i , b

W2

i , bH
2

i , εi
are the estimated time functions from the regression analysis, and

εi(t) is the estimated standard deviation of aMi
�

ðtÞ.
Given the total lifting duration T, the functions with normalized

time t (i.e., aMi
�

ðtÞ and εi(t)) are transformed to the functions with

absolute time t (i.e., aMi
�

ðtÞ and εi(t)) by replacing t with t/T. The
joint angular velocity constraints are defined as follows (Eq. (9)):

aMi

�
ðtÞ � 1:96εiðtÞ � ai

� ðtÞ � aMi

�
ðtÞ þ 1:96εiðtÞ t2½0; T � (9)

where ai
� ðtÞ is the predicted included angular velocity of the i-th

joint at the time point t, and ½aMi
�

ðtÞ � 1:96εiðtÞ; aMi

�
ðtÞ þ 1:96εiðtÞ�

defines the 95% confidence interval.
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3.2.2.3. Joint moment limits. The joint moments are assumed to be
smaller than their corresponding strengths during the whole lifting
period. Therefore, the constraints on the joint moment limits are
defined as follows (Eq. (10)):

M2
i ðtÞ � S2i � 0 i ¼ 1; :::; 5; t2½0; T � (10)

whereMi and Si are the moment and static strength of the i-th joint
in Eq. (3), respectively.

3.2.2.4. Postural stability constraints. The postural stability is ach-
ieved by enforcing the horizontal COM position of the body-load
system to remain within the foot supporting area (Lin et al.,
1999). Therefore, the postural stability constraints can be defined
as follows (Eq. (11)):

xHeel � xCOMðtÞ � xToe t2½0; T � (11)

where xCOM is the horizontal position of the centre of mass for the
body-load system, xHeel and xToe are the horizontal positions of the
corresponding reflective markers (i.e., the markers at the heel and
5th metatarsal), respectively. The body COM is defined as the
weighted sum of each body segment's COM. The parameters for
estimating body segments' COM positions are derived from de Leva
(1996). The load COM is determined as the geometric centre of the
box.

3.2.2.5. Body-load collision avoidance. The collision between the
human body (trunk, thigh and shank) and the lifted load should be
avoided to achieve smooth lifting. Therefore, one of the constraints
is defined by body-load collision avoidance. The lifted load in this
study is a square box (width � height: 0.24 m � 0.26 m). For
simplicity, the box dimension is approximated to be a circle (Circle
A in Fig. 4) with its centre at the box geometric centre and its
diameter as the length of the longer side (i.e., height). The trunk in
the sagittal plane is modelled as a rectangle, and the thigh and
shank are modelled as two cylinders (the dashed lines in Fig. 4),
with their segment lines (i.e. the solid lines in Fig. 4) at the centre.
The width of the trunk rectangle (l1 in Fig. 4) and the diameters of
the thigh and shank cylinders (l2 and l3 in Fig. 4) are estimated from
the measured reflective marker positions in the same way as in
Song et al. (2015). Specifically, the trunk width is calculated as the
distance from the ASIS to the PSIS in the sagittal plane; the thigh
and shank diameters are approximated as the distance between the
lateral and medial epicondyles of femur. Thus, the body-load
Fig. 4. The definitions of the body-load and shelf-load collision avoidance constraints.
collision avoidance constraints are defined as follows (Eq. (12)):

���PBodyðtÞ � PBCðtÞ
��� � 1 =2 ðHBox þ l1Þ���PBodyðtÞ � PBCðtÞ
��� � 1 =2 ðHBox þ l2Þ t2½0; T ����PBodyðtÞ � PBCðtÞ
��� � 1 =2 ðHBox þ l3Þ

(12)

where PBody is the position of any point on the trunk, thigh or shank
segment lines; PBC is the position of the box centre, kk denotes the
Euclidean distance between PBody and PBC; HBox is the box height;
and l1, l2 and l3 represent the trunk width, the diameters of the
thigh and shank, respectively (Fig. 4).
3.2.2.6. Shelf-load collision avoidance. To define the constraint of
the shelf-load collision avoidance, an imaginary circle is placed
right below the shelf (Circle B in Fig. 4), and the box should bypass
this circle during lifting. The circle was tangent to the shelf, and its
diameter is set as the same as the box height. The horizontal dis-
tance from the circle centre to the shelf edge is the circle radius. The
lifted box is approximated in the same way as in the body-load
collision avoidance constraints. Thus, the constraints of the shelf-
load collision avoidance can be defined by calculating the dis-
tance from the box centre to the imaginary circle centre (Eq. (13)):

kPBCðtÞ � PCCk � 1 =2 ðHBox þ DCircleÞ t2½0; T� (13)

where PBC is the position of the box centre, PCC is the position of the
imaginary circle centre, HBox is the box height, and DCircle is the
diameter of the imaginary circle.
3.3. Joint angular trajectory model

Human motions are composed of infinite postures changing
with time. Therefore, the optimization problem in Eq. (2) is actually
of infinite dimension. To deal with this infinite-dimension problem,
the joint angular trajectories are represented using polynomial
functions, and the parameters in these functions become the design
variables in the optimization procedure. Specifically, each joint
angular trajectory qi(t) is represented by a seventh-order Hermite
polynomial (Kincaid and Cheney, 2002) interpolated by the joint
angles at certain time points during lifting (Eq. (14)):

qiðtÞ ¼ f ðqi0; qiT ; qiðtlÞ; T ; tÞ i ¼ 1; :::;5

q
�
i0 ¼ q

�
iT ¼ 0

(14)

in which qi0 and qiT are the joint angles in the starting and ending
postures, respectively; tl represents the time points at 20%, 40%, 60%
and 80% of the total time duration T; q

�
i0 and q

�
iT are the initial and

final joint angular velocities which are assumed to be zero.
Therefore, the optimization problem in Eq. (2) is transformed

into a simplified one where the design variables are defined by
twenty joint angles qi(tl) and denoted as a vector q (Eq. (15)):

Find q

Minimize ObjCom ¼ F
�
q;ObjEffort ;ObjSmooth;wE;wS

�
Subject to ConEqj ðqÞ ¼ 0 j ¼ 1; :::;m

ConIneqk ðqÞ � 0 k ¼ 1; :::;n
q ¼ ½q1ðt1Þ; q1ðt2Þ; :::; qiðtlÞ; :::; q5ðt4Þ� i ¼ 1;…;5
tl ¼ 0:2T ;0:4T ;0:6T ;0:8T ; l ¼ 1; :::; 4

(15)
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3.4. Simulation process

The whole simulation process for one lift with pre-specified
weighting values (wE and wS) is illustrated in Fig. 2. At the begin-
ning, the functional regression equations (Eq. (8)) are first deter-
mined using the actual motions in the database. Given the task
condition (i.e., load weight and destination height), the partici-
pant's attributes (i.e., age, body height andMLC) and the total lifting
time duration, the functional parameters aMi

�
ðtÞ and εi(t) are

calculated using Eq. (8), and will be further used to construct the
data-based joint angular velocity constraints for the optimization
model.

The initial values of the design variable vector (q0) are deter-
mined using actual motions selected from the motion database. It
should be noted that the selected actual motions must be consis-
tent with the simulated one in age attribute (younger or older) and
task scenario (i.e., load weight and destination height). Multiple
motion trials could be retrieved from the database for simulating
one lift. If this is the case, these trials are used to simulate the lifting
motions of interest separately. The simulatedmotion that generates
the minimum value of the composite objective function (Eq. (5)) is
selected as the final prediction result.

Once the initial values of the design variable vector (q0) and the
data-based constraints (aMi

�
ðtÞ,εi(t)) are determined, the lifting

motions are simulated by solving the optimization problem (Eq.
(15)) using an iterative searching method. This iteration process is
illustrated as in the dashed-line square in Fig. 2. The iteration starts
with the inputs including the initial values of the design variable
vector q0, the starting and ending body postures, the total time
duration and the weightingswE andwS. In each searching iteration,
the joint angular trajectories qi(t) are first formulated based on the
inputs using the joint angular trajectory model. The joint angular
trajectories qi(t) are then sent to the physical human body model to
calculate various kinematic and kinetic variables, including the
joint moments, the included joint angles and velocities, the box
motion trajectory and the whole body configurations throughout
the total lifting duration. These variables are used to evaluate the
objective functions and constraints in the optimization model. The
optimization model generates intermediate design variable vector
qInter after each searching iteration. Finally, the optimal design
variable vector qOptim are predicted by minimizing the composite
objective function subject to all the constraints. The optimization is
solved using the sequential quadratic programming algorithm
(SQP) implemented by the optimization toolbox in MATLAB, and
the gradients of the objective function and constraints were
calculated numerically.
4. Motion simulation and model evaluation

The 238 motions of 10 participants mentioned in Section 2 were
simulated and used to evaluate themodel performance. To examine
the effects of the weightings on the prediction results, a series of
weighting values in the composite objective function (Eq. (5)) were
evaluated in the simulation. Specifically, the weightings were
ranged from 0 to 1 with an equal interval of 0.1:

wE ¼ 0 : 0:1 : 1; wS ¼ 1�wE (16)

The model performance was evaluated by comparing the
simulated motions with their corresponding actual ones. The
discrepancy between these two was quantified using the root-
mean-squared (RMS) absolute joint angle errors. The errors of the
predicted motions based on different weightings were compared
within younger and older groups, respectively, so as to determine
the optimal weightings for each age group.
5. Simulation results

Fig. 5 shows the mean RMS absolute angular errors of all joints
combined (i.e., overall error) between the simulated and actual
motions for different weighting values in the younger and older age
groups. When using ObjEffort (i.e.,wE ¼ 1.0 andwS ¼ 0) and ObjSmooth

(i.e., wE ¼ 0 and wS ¼ 1.0) as the single objective functions, the
overall RMS absolute joint angle errors in the older adults are
12.33� and 11.26�, respectively. After using the MOO approach, the
error for the older subjects decreases to the lowest level at 10.01�

when wE ¼ 0.1 and wS ¼ 0.9. For the younger subjects, the mini-
mum overall RMS error across different weightings is 9.37� when
wE¼ 0.9 andwS¼ 0.1 (Fig. 5). The overall errors are 9.55� and 11.55�

when only using ObjEffort and ObjSmooth in the single objective
optimization, respectively.

Table 3 illustrates the mean, median, minimum and maximum
overall RMS joint angle errors under varied task conditions when
using the overall optimal weightings for younger (wE ¼ 0.9 and
wS ¼ 0.1) and older (wE ¼ 0.1 and wS ¼ 0.9) subjects, respectively.
Table 4 presents the mean RMS angular errors for each joint under
varied task scenarios under the overall optimal weightings for both
age groups. Comparisons between the actual and simulated mo-
tions for two representative lifting trials were illustrated in Fig. 6.
These trials were performed by one younger and one older adult,
respectively, with the load weight of 15% MLC and the shelf height
at the elbow level. The optimal weightings in the MOO approach
(i.e. younger adult:wE ¼ 0.9 and wS ¼ 0.1; older adult:wE ¼ 0.1 and
wS ¼ 0.9) were used in the simulation for these two trials.

6. Discussion

The major purpose of this study was to develop a novel lifting
motion simulation model based on the MOO approach. A new
combination of performance criteria, minimum physical effort and
maximum load motion smoothness, was examined using the
weighted-sum MOO approach. Lifting motions performed by
younger and older adults under varied task conditions were
simulated. The comparisons between the simulated and corre-
sponding actual motions were made using their absolute RMS joint
angle errors for evaluating the performance of this model. The
optimal weightings in the MOO associated with the minimum
simulation errors were determined for younger and older adults
separately.

The MOO approach which integrates the two performance
measures (i.e., physical effort and load motion smoothness) suc-
cessfully reduces the prediction errors for both younger and older
age groups compared with using the single-objective optimization.
In the younger group, compared to using ObjEffort and ObjSmooth

alone in the single-objective optimization, the overall RMS absolute
joint angle error decreases by up to 1.9% and 18.9% (when wE ¼ 0.9
and wS ¼ 0.1), respectively, when using the MOO approach. For
older adults, the MOO approach reduced the overall error by up to
18.8% and 11.1% (when wE ¼ 0.1 and wS ¼ 0.9) compared to the
single objective optimization approaches using ObjEffort and
ObjSmooth alone, respectively. Such reduction in the overall RMS
absolute joint angle error supported the argument made by Chang
et al. (2001) that more than one performance criterion might be
needed to better predict and explain the lifting behaviour. In
addition, it also suggested that a combination of minimum physical
effort and maximum load motion smoothness could be an effective
way to define the objective function in theMOO approach for better
lifting motion prediction.

The age-related differences in the optimal combinations of the
performance measures in the MOO approach may help better un-
derstand the distinctions between younger and older adults



Fig. 5. The mean RMS absolute joint angle errors (�) under different weighting values for the younger and older age groups.

Table 3
Mean, median, minimum and maximum absolute joint angle RMS errors (�).

The number
of trials

Mean Median Minimum Maximum

Age
Younger 123 9.37 8.84 4.98 23.42
Older 115 10.01 10.17 5.09 15.99
Load weight
5% MLC 75 9.43 9.25 4.98 17.33
15% MLC 84 9.71 9.68 5.09 23.42
25% MLC 79 9.87 9.38 5.18 15.99
Shelf height
Wrist 83 10.22 10.62 5.37 16.38
Elbow 84 9.35 9.20 4.98 15.49
Shoulder 71 9.42 8.84 5.09 23.42
Overall 238 9.68 9.53 4.98 23.42

The weightings for younger adults: wE ¼ 0.9 and wS ¼ 0.1; the weightings for older
adults: wE ¼ 0.1 and wS ¼ 0.9.
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regarding their motor control mechanisms during lifting. The
physical effort is closely associated with the energy expenditure
during lifting tasks (Fogleman and Smith, 1995); while minimizing
load motion jerk during lifting is related with decreased spinal
compressive forces (Hsiang and McGorry, 1997). For the younger
adults, the optimal weightings of the physical effort and load
Table 4
Mean absolute joint angle RMS errors (�).

Elbow Shoulder Hip Knee Ankle

Age
Younger 12.74 11.41 6.52 5.14 4.37
Older 14.17 13.66 5.68 4.41 4.25
Load weight
5% MLC 13.24 12.05 5.39 4.98 4.71
15% MLC 13.26 13.08 6.02 4.81 4.17
25% MLC 13.80 12.30 6.90 4.57 4.08
Shelf height
Wrist 16.30 11.43 6.54 4.22 3.66
Elbow 11.19 13.87 6.16 5.01 3.96
Shoulder 12.74 12.12 5.60 5.17 5.49
Overall 13.43 12.50 6.11 4.79 4.31

The weightings for younger adults: wE ¼ 0.9 and wS ¼ 0.1; the weightings for older
adults: wE ¼ 0.1 and wS ¼ 0.9.
motion jerk are 0.9 and 0.1, respectively, which indicates that
minimizing energy expenditure are the dominant objective when
planning lifting motions. Given the optimal weighting values of
older adults (0.1 and 0.9 for physical effort and load motion jerk,
respectively), reducing low back load seems to play a more
important role in older adults' lifting motion planning compared
with decreasing energy expenditure.

Such age-related difference is consistent with our earlier find-
ings (Song and Qu, 2014a) that older adults tend to use safer lifting
strategies (e.g., reduced trunk flexion and lifting velocities) to
reduce their low back load than do younger ones. In fact, because of
age-related degenerations in trunk muscle and intervertebral discs
(Adams et al., 2002; Doherty, 2003; Roughley, 2004), older adults
are associated with high LBP risks (Heiden et al., 2013). Therefore,
older adults tend to give the first priority to reducing the low back
load when planning their lifting motions. For younger adults, their
lifting motion patterns (e.g., higher trunk flexion and lifting ve-
locities) can help decrease energy expenditure (Maduri et al., 2008;
Song and Qu, 2014b) and increase working efficiency (reducing the
total lifting duration), but induce larger low back loads. However,
given their higher trunk muscle strengths (Singh et al., 2013), the
increased loads might still be in the safe margin for younger adults.
Therefore, younger adults choose more energy-saving and efficient
kinematic patterns when planning lifting motions at the expense of
increasing low back loads.

Compared with the optimization-based models, the hybrid
model in this study increases the realism of the predicted motions
by incorporating the actual human motions into the optimization
framework. In particular, the joint angular trajectories are con-
strained by the time-functional boundaries determined by real
lifting motions. Chaffin (2005) argued that human motion simu-
lation models should be based on real motion data to assure their
validity. Pasciuto et al. (2014) and Xiang et al. (2012b) also showed
that the hybrid approach can generate more realistic predictions
and improve the simulation accuracy compared to the purely
optimization-based approach. On the other hand, the hybrid
approach has its own drawback: a database of actual human mo-
tions is required. However, as shown in the current and previous
studies (Pasciuto et al., 2014; Song et al., 2015; Xiang et al., 2012b),
the hybrid approach is able to simulate motions in novel scenarios
which are different from those in the database. Pasciuto et al. (2014)



Fig. 6. The actual and simulated joint angular trajectories for one younger and older adult, with load weight of 15% MLC and shelf height at the elbow level; the weightings used in
the MOO are wE ¼ 0.9 and wS ¼ 0.1 for the younger adult and wE ¼ 0.1 and wS ¼ 0.9 for the older adult.
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indicated that the use of the knowledge-based objective function in
the hybrid approach could reduce the prediction dependency on
the goodness of the actual human motions in the database (i.e.,
improving the extrapolation capability).

Xiang et al. (2010) also proposed a lifting motion simulation
model by using the MOO approach. However, they only used the
model to simulate liftingmotions of young andmiddle-aged adults.
In addition, the performance criteria used in their model appeared
not good enough as they found that the addition of the maximum
stability in the objective function did not significantly improve
simulation accuracy. The present study is superior to Xiang et al.
(2010) mainly in two aspects. First, we simulated lifting motions
for both younger and older adults, and attempted to use the pro-
posed model to identify age-related differences in lifting motion
planning. As the workforce is ageing worldwide and older workers
tend to have higher risks of LBP, the knowledge on age-related
differences in lifting motion planning is important for occupa-
tional LBP prevention. Second, previous research suggests that
reducing low back load plays an important role in older adults'
lifting motion planning (Song and Qu, 2014a), and minimizing load
motion jerk is closely associated with reducing low back load
(Hsiang and McGorry, 1997). Thus, minimum load motion jerk was
included in the objective function of the optimization procedure.
These findings provide an experimental basis for the inclusion of
minimum load motion jerk in the objective function of the opti-
mization procedure which enhances the validity of our proposed
model.

There are several limitations in this study. First, comprehensive
data of age-specific dynamic strengths for the lifting task is not
available in the existing literature. Therefore, only static strength
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was used and age-related differences in the joint strengths were
not taken into account when defining the objective functions. This
could have adverse effects on the simulation results. To obtain
better simulation accuracy, dynamic joint strength data of different
age populations should be measured and used in future motion
simulation models. Second, only static postural stability constraint
(Lin et al., 1999) was applied in this study. The dynamic stability
based on zero moment point (Xiang et al., 2010) should be used in
future studies. Third, only 2-D sagittal lifting motions were simu-
lated. Lifting outside the sagittal plane (i.e. asymmetric lifting) is
common in industry, and associated with higher LBP risks (Davis
and Marras, 2005). Therefore, the present model should be
further developed for simulating 3-D lifting motions in future
research. Specifically, a complex 3-D human bodymodel withmore
degrees of freedomwill be adopted for simulating 3-D asymmetric
lifting motions in our future study. In addition, only two perfor-
mance criteria were examined using the MOO approach in this
study. Other performance criteria, such as minimum joint torque
change (Uno et al., 1989), minimum muscle force change
(Menegaldo et al., 2003) and minimum spine compressive force
(Xiang et al., 2012a) may also be investigated in the MOO approach
in future studies so as to better understand the mechanisms of
lifting motion planning. In order to do so, various musculoskeletal
human body models, such as biomechanical muscle models (Delp
et al., 1990) and musculoskeletal spine models (Chaffin et al.,
2006), should be integrated into the present motion prediction
model. Finally, as suggested by Chaffin (2005), fast computation for
real time simulations is one of the most important criteria when
evaluating digital human models for proactive ergonomics.
Therefore, other optimization algorithms could be used in future
research, and post-optimization analysis on various computation
parameters (e.g., CPU time, number of iterations) will be conducted
in future simulations to evaluate the computation efficiency of
different optimization algorithms.

7. Conclusions

In this study, a novel lifting motion simulation model was
developed using the MOO approach. A combination of two per-
formance criteria, minimum physical effort and maximum load
motion smoothness, was examined using the weighted-sum MOO
approach. Two-dimensional lifting motions performed by younger
and older adults under varied task conditions were simulated. The
optimal weightings in the MOO that led to the best simulation
accuracy were determined separately for both age groups. The re-
sults showed that using the MOO approach improved the simula-
tion accuracy compared with using the single-objective
optimization approach. The MOO approach also helps provide
insight into how humans of different ages plan and control lifting
motions. In particular, minimizing physical effort plays a more
important role than maximizing load motion smoothness during
lifting motion control for younger adults. For older adults, however,
maximum load motion smoothness seems to be a dominant
objective during lifting tasks.
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